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Abstract— Total Variation (TV) regularization has become a
popular method for a wide variety of image restoration problems,
including denoising and deconvolution. A number of authors have
recently noted the advantages of replacing the standard `2 data
fidelity term with an `1 norm. We propose a simple but very
flexible method for solving a generalized TV functional which
includes both the `2-TV and and `1-TV problems as special cases.
This method offers competitive computational performance for
`2-TV, and is comparable to or faster than any other `1-TV
algorithms of which we are aware.

Index Terms— image restoration, inverse problem, regulariza-
tion, total variation

I. INTRODUCTION

Total Variation (TV) regularization has become a very pop-
ular method for a wide variety of image restoration problems,
including denoising and deconvolution [1], [2]. The standard
`2-TV regularized solution of the inverse problem involving
data s and forward linear operator K (the identity in the case
of denoising, and a convolution for a deconvolution problem,
for example) is the minimum of the functional

T (u) =
1
p

∥∥∥∥Ku− s
∥∥∥∥p

p

+
λ

q

∥∥∥∥√(Dxu)2 + (Dyu)2
∥∥∥∥q

q

(1)

for p = 2 and q = 1, where we employ the following notation:

• the p-norm of vector u is denoted by ‖u‖p,
• scalar operations applied to a vector are considered to be

applied element-wise, so that, for example, u = v2 ⇒
uk = v2

k and u =
√

v ⇒ uk =
√

vk, and
• horizontal and vertical discrete derivative operators are

denoted by Dx and Dy respectively.

While a number of algorithms [1], [3] have been proposed to
solve this optimization problem, it remains a computationally
expensive task which can be prohibitively costly for large
problems and forward operators K without a fast implicit
implementation or a sparse explicit matrix representation.

Recently, the `1-TV functional [4], [5], corresponding to
Equation (1) with p = 1 and q = 1, has attracted attention
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due to a number of advantages [6], including superior per-
formance with non-Gaussian noise such as speckle noise, and
applications in cDNA microarray image processing [7], and
cartoon-texture decomposition [8]. While a number of efficient
algorithms have been proposed for the `2-TV problem (see, for
example [1]), effective methods for the `1-TV problem have
only recently been developed, the fastest of which [9], [10],
[11] being applicable only to the K = I denoising problem.

We propose a simple but computationally efficient and very
flexible method for solving the generalized TV functional of
Equation (1) for p ≥ 1, q ≥ 1, and K a linear operator which
is not necessarily the identity.

II. ITERATIVELY REWEIGHTED NORM APPROACH

Our Iteratively Reweighted Norm (IRN) approach is mo-
tivated by the Iteratively Reweighted Least Squares (IRLS)
algorithm [12], [13], [14] for solving the minimum `p norm
problem

min
u

1
p

∥∥∥∥Ku− s
∥∥∥∥p

p

(2)

by solving a sequence of minimum weighted `2 norm prob-
lems, and is also closely related to the Iterative Weighted
Norm Minimization algorithms [15], [16] for sparse signal
decompositions.

These methods represent the `p norm of u

1
p
‖u‖p

p =
1
p

∑
k

|uk|p,

by the weighted `2 norm of u

1
2

∥∥∥W 1/2u
∥∥∥2

2
=

1
2
uT Wu =

1
2

∑
k

wku2
k

with diagonal weight matrix W = (2/p) diag
(
|u|p−2

)
. At

each iteration of an iterative scheme, the `p norm is approx-
imated by the weighted `2 norm using the weights from the
previous iteration. To simplify somewhat, this approximation
may be used to minimize the norm because, for the same
choice of W (and u such that uk 6= 0 ∀k) we have

∇u
1
p
‖u‖p

p = (p/2)∇u
1
2

∥∥∥W 1/2u
∥∥∥2

2
,

so that both expressions have the same value and tangent
direction. The proof of convergence for IRN is too long to
reproduce here but is very similar to that for IRLS [14], and
will be presented in detail in a paper that we are currently
preparing.
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A. Data Fidelity Term

The data fidelity term of Equation (1) has the form of the
IRLS functional in Equation (2), and is handled in the same
way, representing

1
p

∥∥∥∥Ku− s
∥∥∥∥p

p

by
1
2

∥∥∥W 1/2
F (Ku− s)

∥∥∥2

2

with iteratively updated weights WF . To avoid infinite weights
for p < 2 and uk = 0, we set

WF = diag
(

2
p
fF (Ku− s)

)
where

fF (x) =
{
|x|p−2 if |x| > εF

εp−2
F if |x| ≤ εF ,

for some small εF , a common approach for IRLS algo-
rithms [13]. In the limit as εF → 0, this weighted `2 norm
tends to the original `p norm fidelity term.

B. Regularization Term

It is not quite as obvious how to express the regularization
term from Equation (1) as a weighted `2 norm. Given vectors
u and v we have (using block-matrix notation)∥∥∥∥( W 1/2 0

0 W 1/2

)(
u
v

)∥∥∥∥2

2

=
∑

k

wku2
k + wkv2

k

so that when

W = diag
(

2
q

(
u2 + v2

)(q−2)/2
)

we have

1
2

∥∥∥∥( W 1/2 0
0 W 1/2

)(
u
v

)∥∥∥∥2

2

=
1
q

∥∥∥√u2 + v2
∥∥∥q

q
.

We therefore define the operator D and weights W̃

D =
(

Dx

Dy

)
W̃ =

(
W 0
0 W

)
so that ‖W̃R

1/2
Du‖22 = ‖W 1/2

R Dxu‖22 + ‖W 1/2
R Dyu‖22 with

weights defined by

WR = diag
(

2
q

(
(Dxu)2 + (Dyu)2

)(q−2)/2
)

gives the desired term. (This is not the anisotropic separable
approximation ‖Dxu‖q

q+‖Dyu‖q
q to

∥∥∥√(Dxu)2 + (Dyu)2
∥∥∥q

q
that is often used, e.g. [17].)

As in the case of the data fidelity term, care needs to be
taken when q < 2 and uk = 0. We define

fR(x) =
{
|x|(q−2)/2 if |x| > εR

0 if |x| ≤ εR,

for some small εR and set

WR = diag
(

2
q
fR

(
(Dxu)2 + (Dyv)2

))
.

In the limit as εR → 0, this weighted `2 norm tends to

the original `q norm fidelity term. Note that fR sets values
smaller than the threshold, εR, to zero, as opposed to fF ,
which sets values smaller than the threshold, εF , to εp−2

F . Our
motivation for this choice is that a region with very small
or zero gradient should be allowed to have zero contribution
to the regularization term, rather than be clamped to some
minimum value. In practice, however, we have found that this
choice does not give significantly different results than the
standard IRLS approach represented by fF .

C. General Algorithm

Combining the terms described in Sections II-A and II-B,
we have the functional

T (u) =
1
2

∥∥∥W 1/2
F (Ku− s)

∥∥∥2

2
+

λ

2

∥∥∥W̃R
1/2

Du
∥∥∥2

2

which, it is worth noting, may be expressed as

T (u) =
1
2

∥∥∥∥∥
(

W
1/2
F 0

0 W̃R
1/2

)((
K√
λD

)
u−

(
s
0

))∥∥∥∥∥ ,

which has the same form as an IRLS problem, but differs in
the computation of W̃R

1/2
. The minimum of this functional

is
u =

(
KT WF K + λDT W̃RD

)−1

KT WF s, (3)

and the resulting algorithm consists of the following steps:

Initialize
u0 =

(
KT K + λDT D

)−1
KT s

Iterate

WF,k = diag
(

2
p
fF (Kuk−1 − s)

)
WR,k = diag

(
2
q
fR

(
(Dxuk−1)2 + (Dyuk−1)2

))
uk =

(
KT WF,kK + λDT

x WR,kDx

+λDT
y WR,kDy

)−1
KT WF,ks

The matrix inversion is achieved using the Conjugate Gradient
(CG) method. We have found that a significant speed improve-
ment may be achieved by starting with a high CG tolerance
which is decreased with each main iteration until the final
desired value is reached.

D. Denoising Algorithm

In the case of the denoising problem, when K = I , we may
apply the substitution ũ = W

1/2
F u, giving

T (ũ) =
1
2

∥∥∥ũ−W
1/2
F s

∥∥∥2

2
+

λ

2

∥∥∥W̃R
1/2

DW
−1/2
F ũ

∥∥∥2

2
,

with solution

ũ =
(
I + λW

−1/2
F DT W̃RDW

−1/2
F

)−1

W
1/2
F s. (4)

Applying this modification to the general algorithm of
Section II-C was found to result (see Section III) in a very
large reduction in the required number of CG iterations.
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III. COMPUTATIONAL RESULTS

In the remainder of this paper we shall restrict our attention
to the `1-TV case (p = 1, q = 1), but note that this flexible
approach is capable of efficiently solving other cases as well,
including the standard `2-TV case (p = 2, q = 1) where we
have found it to be slightly slower than the lagged diffusivity
algorithm [1], to which it is related. For the results reported
here, operators Dx and Dy were defined by applying the
same one-dimensional discrete derivative along image rows
and columns respectively. Applied to vector u ∈ RN , this
discrete derivative was computed as uk − uk+1 for k ∈
{0, 1, . . . , N − 2}, and set to zero at N − 1 (equivalent to a
half-sample symmetric boundary extension). Constants εF and
εR were set to values in the range 10−1 to 10−3, representing a
reasonable compromise between solution quality (the weighted
`2 approximations to the `p and `q norms deteriorate as these
values become larger) and run time (the linear system in
Equation (3) becomes increasingly poorly conditioned as they
become smaller). Except where specified otherwise, run times
were obtained on a 3GHz Intel Pentium 4 processor.

A. Denoising

We tested the denoising performance of the IRN algorithm
on the 512 × 512 pixel Lena image with 10% of the pixels
corrupted by speckle noise, giving an SNR of 1.2dB. Figures
1 and 2 display the reconstruction qualities (with respect to
the reference noise-free image) and run times respectively for
three different choices of regularization parameter λ. Note that,
for the best choice of λ = 1.25, the SNR curve has flattened
out by iteration 6, corresponding to a run time of 4.5s. (The
curve of functional values against iteration number, omitted
due to space constraints, is also almost flat by iteration 6.) The
advantages of the denoising-specific algorithm (Section II-D)
over the general algorithm (Section II-C) are clearly shown in
Figure 3.
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Fig. 1. Denoising SNR values against algorithm iteration number.

A run-time performance comparison with the Goldfarb and
Yin [18] method is provided in Table I, the parameters of both
methods having been selected for a similar quality/run-time
tradeoff. (This comparison is for a downsampled Lena image
since the SOCP solver exhibited convergence problems for the
full 512× 512 image used elsewhere in this paper.) Note that
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Fig. 2. Denoising time against algorithm iteration number.
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Fig. 3. A comparison of CG iterations for the denoising (Section II-D) and
general (Section II-C) algorithms.

the IRN method is more than an order of magnitude faster,
for this application. We have not been able to conduct direct
performance comparisons with the recent Darbon and Sigelle
method [10], [11], but comparisons between their published
run times and our own experiments performed on comparable
platforms suggest that their method is of comparable speed to
the IRN method. Their method has the advantage of providing
an exact solution to the TV optimization problem, but this
is usually not an issue for practical denoising application,
and furthermore, is not extensible to more general image
restoration problems.

B. Deconvolution

We use a deconvolution problem to demonstrate the appli-
cation of the IRN algorithm when K 6= I , choosing K as the

Method Time (s)
SOCP [18] 20.4
IRN (general) 2.1
IRN (denoising) 0.5

TABLE I
A COMPARISON BETWEEN SOCP AND IRN `1-TV DENOISING RUN TIMES

FOR A 256 × 256 LENA IMAGE CORRUPTED BY 5% SPECKLE NOISE.
RESULTS WERE COMPUTED ON A 2.2GHZ AMD OPTERON 148 CPU.
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linear operator corresponding to convolution by a separable
smoothing filter having 9 taps and approximating a Gaussian
with standard deviation of 2.0. In this case, since K 6= I ,
the substitution applied in the previous section is no longer
possible. We used the same test image as in Section III-A,
convolving it with the filter described above, and corrupted
10% of the pixels with speckle noise, giving a 1.4dB SNR
image. Figure 4 displays the reconstruction SNR values against
algorithm iteration number for three different values of λ,
while Figure 5 display the evolution of the TV functional and
its weighted approximation for the best choice λ = 10−3.
Note that both of these curves have flattened out by iteration
7, which corresponds to a run time of 209s. (Using a variable
CG solver accuracy strategy, we are able to achieve a similar
SNR in 118s.) We are not aware of any other algorithms with
comparable performance for general (K 6= I) reconstruction
problems.

IV. CONCLUSIONS

The IRN approach provides a simple but computationally
efficient method for TV regularized optimization problems,
including both denoising and those having a linear operator in
the data fidelity term, such as deconvolution. This method is
very flexible, and can be applied to regularized inversions with
a wide variety of norms for the data fidelity and regularization
terms, including the standard `2 TV, and more recently pro-
posed `1 TV formulations, and, in particular, provides a very
fast algorithm for the `1 TV case. A software implementation
[19] is available under an open-source license.
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